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Abstract

Greenhouses are classified as complex systems, so it is difficult to implement classical control methods for this kind of
process. In our case we have chosen neural network techniques to drive the internal climate of a greenhouse. An Elman
neural network has been used to emulate the direct dynamics of the greenhouse. Based on this model, a multilayer feed-
forward neural network has been trained to learn the inverse dynamics of the process to be controlled. The inverse neural
network has been placed in cascade with the neural model in order to drive the system outputs to desired values. Simu-
lation results will be given to prove the performance of neural networks in control of the greenhouse.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Greenhouses are considered as complex processes. In fact, they are non linear, multi-input multi-output
(MIMO) systems, they present time-varying behaviors and they are subject to pertinent disturbances depend-
ing generally on meteorological conditions [1–5]. All these make difficult to describe a greenhouse with ana-
lytic models and to control them with classical controllers. In [2] the author has presented a model of a
greenhouse using the energy balance. The proposed model is then used to try simulation on the greenhouse
climate (temperature and hygrometry) with optimal control in a part of day. In [3] the author has proposed
a greenhouse model including the crop transpiration. Then he showed a comparison between optimal and pre-
dictive control on the considered greenhouse in a part of day. In [5] the authors have described the application
of model predictive control (MPC) for temperature regulation in agricultural processes (a greenhouse). The
MPC algorithm used here takes in account the constraints in both manipulated and controlled variables using
an on-line linearisation with a very low computational burden. This MPC scheme is compared with an adap-
tive PID controller. In [17] the authors have proposed an application of fuzzy logic to identify and control of
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multi-dimensional systems. They describe a method to reduce the complexity of a fuzzy controller and they
show an application on a real system (a greenhouse). In our case we opt to the use of neural networks to model
and to control a greenhouse. A recurrent neural network based on an Elman structure [6,7] is trained to emu-
late the direct dynamics [7–9] of the greenhouse and used as a greenhouse model and a multilayer feed-forward
neural network [10,11] trained to emulate the inverse dynamics of the considered greenhouse is applied as a
controller [12–15] to provide the control inputs to the greenhouse.

This paper is organized as follows: in Section 2, we describe the considered greenhouse. In Section 3 we
present the architecture of the used Elman neural network to emulate the direct dynamics of the green-
house and the results of the modeling step. In Section 4, we show, the training structure of feed-forward
neural network to emulate the inverse dynamics of the greenhouse then the recall structure used for con-
trol following with simulation results and comments. Finally, a conclusion and prospects are given in
Section 5.

2. Greenhouse description

The considered greenhouse is a classical one with glasses armatures and defined by, a surface with 40 m2

and a volume with 120 m3. It is equipped with sensors allowing measurements of the internal and external cli-
mates. The internal climate defined by the internal temperature and the internal hygrometry constitute the
greenhouse outputs. In order to control the internal climate the greenhouse is equipped with a set of actuators
composed with a heater functioning in the on/off mode with 5 kw power, a sliding shutter with an opening
between 0� and 35�, a sprayer and a curtain with a length varying between 0 and 3 m. The external climate
composed with the external temperature, the external hygrometry, the global radiant and the wind speed
act directly on the functional state of the greenhouse. The external climate parameters are considered as
non controllable inputs or disturbances.

The whole functioning system is equivalent to a multi-variable and a non-linear. It can be summarized in
the functional bloc diagram given in Fig. 1. Where Te is the external temperature, He is the external humidity,
Rg is the global radiant, Vv is the wind speed, Ch is the heating input, Ov is the sliding shutter, Br is the
sprayer, Om is the curtain, Ti is the internal temperature and Hi is the internal humidity.

The inside temperature can be defined by [1–3]:

Tiðk þ 1Þ ¼ F½TiðkÞ;HiðkÞ; TeðkÞ;HeðkÞ;RgðkÞ; VvðkÞ;ChðkÞ;OvðkÞ;BrðkÞ;OmðkÞ�: ð1Þ
The inside humidity can be defined by [1–3]:

Hiðk þ 1Þ ¼ G ½HiðkÞ; TiðkÞ; TeðkÞ;HeðkÞ;RgðkÞ; VvðkÞ;ChðkÞ;OvðkÞ;BrðkÞ;OmðkÞ�; ð2Þ
where F and G are unknown non-linear functions [1–3].

For the considered greenhouse, measurements have been taken through one day. The sampling time has
been chosen equal to one minute. This has permit to get a database file with 1440 rows, each row is composed
with eight columns which represent, the external temperature Te(k), the internal temperature Ti(k), the exter-
nal hygrometry He(k), the internal hygrometry Hi(k), the wind speed Vv(k), the global radiant Rg(k), the hea-
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Fig. 1. Greenhouse functional bloc diagram.
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Fig. 2. Evolution of the external and internal temperature.
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Fig. 3. Evolution of the external and internal hygrometry.
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Fig. 4. Evolution of the wind speed and the global radiant.
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ter Ch(k), the sprayer Br(k), the sliding shutter Ov(k) and the shade Om(k). Figs. 2–6 show the evolution of
these parameters respectively in the considered day. The measurements started at 0 h (0 min) and achieved at
23 h and 59 min (1440 min).
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Fig. 5. Evolution of the actuators heater and sprayer.
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Fig. 6. Evolution of the actuators sliding shutter and curtain.

F. Fourati, M. Chtourou / Simulation Modelling Practice and Theory 15 (2007) 1016–1028 1019
3. Greenhouse neural modeling

Greenhouses are classified as complex processes. So it is very difficult to obtain kinetic models that repre-
sent the whole dynamics of the system. For this we have resort to advanced techniques to resolve such prob-
lem. In our case we have chosen a resolution with neural network and precisely an Elman structure [6,7].

3.1. Elman neural network

To emulate the direct dynamics of the greenhouse we have chosen an Elman structure which is a recurrent
neural network. In contrast with a feed-forward neural network the recurrent structure presents faster com-
putation due to the smaller number of units in the input layer and a recall structure similar to the training
structure [7].

An Elman network structure is composed with an input layer, a hidden layer, a context layer and an output
layer. The input and output units interact with the outside environment, while the hidden and context units do
not. Fig. 7 shows the Elman neural structure used to model the greenhouse. Where, U(k) is the input vector,
Ym(k) is the output vector, Wxu is the weights vector between the hidden and the input layers, Wyx is the
weights vector between the output and the hidden layers and Wxc is the weights vector between the hidden
and the context layers. The activation function of the hidden units is the sigmoı̈dal one [7].
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Fig. 7. Elman neural network structure.
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3.2. Training structure

The database file of the greenhouse has been divided into two parts alternatively. Each part constitutes a
database file with 720 rows, so the effectively sample time now is 2 min. The two files have been used recep-
tively, for training and to validate the neural model.

Fig. 8 shows the procedure of training the considered neural network to emulate the direct dynamics of the
greenhouse [7,12,13].

In our case, U(k) = [Ov(k), Ch(k), Br(k), Om(k), Te(k), He(k), Rg(k), Vv(k)]T, Yp(k) = [Ti(k), Hi(k)], each
layer, hidden and context is constituted with four units. The used algorithm to adjust the weights vectors is the
backpropagation algorithm minimizing a square error criterion J1(k) (3) between effective greenhouse outputs
and neural network outputs at time k [7,13].

J 1ðkÞ ¼
1

2

Xn

i¼1

½yp
i ðkÞ � ym

i ðkÞ�
2 ¼ 1

2

Xn

i¼1

½eiðkÞ�2 ð3Þ

Here, n = 2
J1(k) is minimized with a gradient method. The weights vectors are adjusted as following:
kε

)1( +ky m

)(ku

)1( +ky p
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Fig. 8. Learning of direct greenhouse dynamics.
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W yxðtÞ ¼ W yxðt � 1Þ � g
oJ 1ðkÞ
oW yx ; ð4Þ

W xuðtÞ ¼ W xuðt � 1Þ � g
oJ 1ðkÞ
oW xu ; ð5Þ

W xcðtÞ ¼ W xcðt � 1Þ � g
oJ 1ðkÞ
oW xc ; ð6Þ

where g is the learning rate, such that: g < 1 and t is the iteration number.

3.3. Recall structure

After the learning step, the neural model will imitate the greenhouse behavior, it will be exploited to achieve
a feed-back control loop, it provides greenhouse outputs from a given input vector. Figs. 9 and 10 show the
real greenhouse outputs (Ti(k) and Hi(k)) with continued lines and neural model outputs (Tin(k) and Hin(k))
with dashed lines.

In order to evaluate the modelling step, we define the average statistic prediction error and the prediction
variance, respectively:

�mei ¼
P720

k¼1eiðkÞ
720

; ð7Þ

where i 2 {1,2}

r2
ei
¼
P720

k¼1½eiðkÞ � �mei �
2

720
: ð8Þ

In the case of temperature,

�me1
¼ �0:09443907999; ð9Þ

r2
e1
¼ 0:71584255096: ð10Þ

In the case of hygrometry,

�me2
¼ �0:37995060776; ð11Þ

r2
e2
¼ 4:0926788077: ð12Þ
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Fig. 9. Real greenhouse temperature and first output of the neural model.
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Figs. 11 and 12 show the evolution of the prediction error and the prediction variance through time,
respectively.

The model has been tested with the second database file of the greenhouse. Figs. 13 and 14 illustrate the
outputs of greenhouse and model.

The above results confirm that adopted neural Elman model of the greenhouse has well emulate the direct
dynamics of the greenhouse. It can be used efficiently in a control task.

4. Greenhouse neural control

Now the real greenhouse is replaced by the described Elman neural network model above. To control the
greenhouse we need a controller able to take with the complexity of the system. The multilayer feed-forward
neural network with an input layer, an output layer and one hidden layer can be used as solution to control
such process [7,12,13].
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4.1. Neural controller structure

Three controllers have played important roles in research on neural control. They are: Albus’s cerebellar
model articulation (CMAC), Kawato et al.’s hierarchical neural network controller and Psaltis et al.’s multi-
layered neural network controller [7,12,13]. The last one offers important architecture for control and it is
essentially a feed-forward neural network. Fig. 15 shows the architecture of a multilayer feed-forward neural
network.

The above neural network is composed with an input layer, one hidden layer, and an output layer. The
activation function of the hidden and the output units is the sigmoidal one. Here, the connection weight
between a hidden unit j and an input unit i is wj,i and the connection weight between an output unit o and
a hidden unit j is wo,j.

This kind of neural network is an universal nonlinear function approximator [12,14].
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4.2. Training structure

Here the training structure is similar to an off line learning for emulating the inverse dynamics of the plant
[7,13]. Fig. 16 shows the training method of the neural controller.
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Fig. 16. Training structure of the controller.
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The parameters a and b are chosen according to the order of the considered system (greenhouse in our
case).

In this architecture, the neural network is trained to minimize the error between the greenhouse input u(k)
and the network output s(k).

Here, the input vector of the controller is E(k) = [Ti(k + 1), Hi(k + 1), Ti(k), Hi(k), Te(k),He(k), Rg(k),
Vv(k)]T, the output vector (control actions) is S(k) = U(k) = [Ov(k), Ch(k), Br(k), Om(k)]T.

The used algorithm to adjust the connections weight is the backpropagation algorithm minimizing a square
error criterion J2(k) (13) between neural outputs and effective inputs of the greenhouse at time k.

J 2ðkÞ ¼
1

2

Xm

i¼1

½siðkÞ � uiðkÞ�2 ð13Þ

Here, m = 4
The connections weight wj,i et wo,j are adjusted respectively by Eqs. (14) and (15):

wj;iðtÞ ¼ wj;iðt � 1Þ � g
oJ 2ðkÞ
owj;i

; ð14Þ

wo;jðtÞ ¼ wo;jðt � 1Þ � g
oJ 2ðkÞ
owo;j

; ð15Þ

where g is the learning rate, such that: g < 1 and t is the iteration number.
The bloc diagram of greenhouse neural controller is shown in Fig. 17.
After the learning step the same neural network will be used to generate control signals, defining a neural

controller based on the inverse model of the plant or a feedback sate control [7,12,14,16].

4.3. Control structure

After training, the neural controller is able to provide an appropriate u(k) to the greenhouse if a desired
output yd is defined. The considered neural network is placed in cascade with the greenhouse and as shown
in Fig. 18, the whole system constitutes a feedback control with a nonlinear controller [7,12,13,15,16].

In our case, the desired output is Yd(k) = [Tid(k), Hid(k)]T = [11, 70]T, a = 0 and b = 1.
A temperature of Tid = Tid(k) = 11 �C and an hygrometry Hid = Hid(k) = 70% are the references recom-

mended from agriculturists.
The above control strategy has been applied to the greenhouse represented with the Elman neural network

model. Fig. 19 shows the outputs of the greenhouse after a control phase.
Comparing to the open loop control (see Figs. 9 and 10) the error between references and greenhouse out-

puts has been reduced. It is small during the night but it is larger during the day. This is can be explained by
the limit of the actuators power, in fact the energy provided is not sufficient to drive the internal climate to the
desired one.
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Fig. 17. Controller bloc diagram.
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In order to evaluate the control step, we define the following error criterion:

Ec ¼ 1

720

X720
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½ðTidðkÞ � TiðkÞÞ2 þ ðHidðkÞ � HiðkÞÞ2� ð16Þ
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Fig. 20. Evolution of the heater and sprayer actuators.
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In the case of the open loop control, Ec = 533.31 and with the neural control strategy Ec = 344.12.
The error Ec has been reduced when we have applied the neural control strategy.
The evolutions of the actuators during the neural control step are given in Figs. 20 and 21.

5. Conclusion and prospects

In this paper we have used an Elman neural network to emulate the direct dynamics of a greenhouse. The
obtained model has been used next in closed loop control using a multilayer feed-forward neural network.
This last is trained to emulate the inverse dynamics of the greenhouse and then used as a nonlinear controller
with feedback state to provide the control actions for the process. The simulation results show that neural net-
works strategies give good performances when controlling complex process such greenhouses. The control
results can be more improved if the considered greenhouse is equipped with powerful actuators and an adap-
tive neural controller or a multiple neural control strategy are adopted.
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